Impact of circuit assist methods on margin and performance in 6T SRAM
نویسندگان
چکیده
0038-1101/$ see front matter 2010 Elsevier Ltd. A doi:10.1016/j.sse.2010.06.009 * Corresponding author. E-mail addresses: [email protected] (R.W. Ma Wang), [email protected] (S. Nalam), sk4fs@virgin us.ibm.com (G. Braceras), [email protected] (H. Pilo) Calhoun). Large scale 6T SRAM beyond 65 nm will increasingly rely on assist methods to overcome the functional limitations associated with scaling and the inherent read stability/write margin trade off. The primary focus of the circuit assist methods has been improved read or write margin with less attention given to the implications for performance. In this work, we introduce margin sensitivity and margin/delay analysis tools for assessing the functional effectiveness of the bias based assist methods and show the direct implications on voltage sensitive yield. A margin/delay analysis of bias based circuit assist methods is presented, highlighting the assist impact on the functional metrics, margin and performance. A means of categorizing the assist methods is developed to provide a first order understanding of the underlying mechanisms. The analysis spans four generations of low power technologies to show the trends and long term effectiveness of the circuit assist techniques in future low power bulk technologies. 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
A new asymmetric 6T SRAM cell with a write assist technique in 65 nm CMOS technology
A new asymmetric 6T-SRAM cell design is presented for low-voltage low-power operation under process variations. The write margin of the proposed cell is improved by the use of a new write-assist technique. Simulation results in 65 nm technology show that the proposed cell achieves the same RSNM as the asymmetric 5T-SRAM cell and 77% higher RSNM than the standard 6T-SRAM cell while it is able to...
متن کاملDesign and Verification of Low Power SRAM using 8T SRAM Cell Approach
SRAM cell stability will be a primary concern for future technologies due to variability and decreasing power supply voltages. Advances in chip designing have made possible the design of chips at high integration and fast performance. Lowering power consumption and increasing noise margin have become two central topics in every state of SRAM designs.The Conventional 6T SRAM cell is very much pr...
متن کاملSub-25 nm UTB SOI SRAM cell under the influence of discrete random dopants
Intrinsic parameter fluctuations steadily increase with CMOS technology scaling. Around the 65 nm technology node, such fluctuations will eliminate much of the available noise margin in SRAM based on conventional MOSFETs. Device mismatch due to intrinsic parameter fluctuation causes each memory cell of the millions in a typical memory array to have different stability and performance. Ultra Thi...
متن کاملImpact of Body Thickness Fluctuation in Nanometre Scale UTB SOI MOSFETs on SRAM Cell Functionality
Ultra Thin Body (UTB) SOI MOSFETs are increasingly competitive for nanometre scale VLSI applications due to superior electrostatic integrity compared to conventional MOSFETs. The possibility to use undoped channels in such devices also dramatically reduces the random dopant induced parameter fluctuations. To fully realise performance benefits of UTB SOI based circuits a statistical circuit simu...
متن کاملA New 8T SRAM Circuit with Low Leakage and High Data Stability Idle Mode at 70nm Technology
Memory has been facing several problems in which the leakage current is the most severe. Many techniques have been proposed to withstand leakage control such as power gating and ground gating. In this paper a new 8T SRAM cell, which adopts a single bit line scheme has been proposed to limit the leakage current as well as to gain high hold static noise margin. The proposed cell with low threshol...
متن کامل